If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+22x+20=0
a = 5; b = 22; c = +20;
Δ = b2-4ac
Δ = 222-4·5·20
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{21}}{2*5}=\frac{-22-2\sqrt{21}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{21}}{2*5}=\frac{-22+2\sqrt{21}}{10} $
| -9-4n=1-6n | | -78=6(x+7) | | (h)/(6)-1=-3 | | 3t-5=3 | | 3x^-4x=-5 | | 3(x=9)=15 | | 44+6p=-2 | | 7/x+9=2136 | | 7x+9=21/36 | | 7x+9=2136 | | 100(52-x=4800 | | 5(k-1)-1=-9 | | t/2+(-1)=-3.94 | | 9.19=5.99+2g | | 6b-(-12)=96 | | 2x1–x2+3x3=9 | | 11=4c+9 | | 11=4c=9 | | 78+6x=134-8x | | 8x-3=6+11 | | 1x-5=5x+8 | | 3x-(-10)=19.39 | | 4x+7=58+x | | 5p+7=12 | | 3u-(-10)=19.39 | | 7m+12=15 | | 6-(-g)=-7 | | 60=8r+12 | | 9w–24=6w+18 | | 7(n+3)=4=-3 | | -34=-8s+14 | | -34=-8s=14 |